Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online
bei Ihrer lokalen, inhabergeführten Buchhandlung!
Dieses Buch bietet eine schlanke und gut zugängliche Hinführung zur Analysis. Gut 100 komplett durchgerechnete Beispiele, etwa 50 Aufgaben mit Lösungen sowie rund 40 kleine Selbsttests mit Antworten erleichtern den Zugang zum Thema. Abgerundet wird das Ganze durch etwa 80 Skizzen im Text sowie ein online verfügbares interaktives pdf-Tool zum Generieren von Zufallsaufgaben inklusive Lösungen.
Das Buch richtet sich an Studierende in Studiengängen mit mathematischen Pflichtveranstaltungen im Grundstudium an Universitäten und Fachhochschulen. Es ist sowohl als Begleitlektüre für entsprechende Vorlesungen als auch zum Selbststudium optimal geeignet.Der InhaltMotivation und EinführungMathematische GrundkonzepteRelationen und FunktionenFunktionen vom Bernstein-Bézier-TypFolgen und ReihenTranszendente FunktionenStetige FunktionenDifferenzierbare FunktionenFunktionen vom B-Spline-TypIntegrierbare Funktionen
Die ZielgruppenStudierende der Informatik, Mathematik, Physik, Elektrotechnik oder Wirtschaftswissenschaften
Der Autor
Prof. Dr. Burkhard Lenze hat Mathematik mit Nebenfach Physik an der TU Dortmund studiert und promovierte und habilitierte in Mathematik an der FeU Hagen. Gegenwärtig lehrt er als Professor für Angewandte Informatik und Mathematik am Fachbereich Informatik der FH Dortmund. Sein akademisches Interesse gilt Fragestellungen aus dem Bereich der Angewandten Mathematik mit Affinität zur Informatik, speziell: Fourier-Techniken, Neuronale Netze, Kryptografie und Quantum Computing.
Prof. Dr. Burkhard Lenze hat Mathematik mit Nebenfach Physik an der TU Dortmund studiert und promovierte und habilitierte in Mathematik an der FeU Hagen. Gegenwärtig lehrt er als Professor für Angewandte Informatik und Mathematik am Fachbereich Informatik der FH Dortmund. Sein akademisches Interesse gilt Fragestellungen aus dem Bereich der Angewandten Mathematik mit Affinität zur Informatik, speziell: Fourier-Techniken, Neuronale Netze, Kryptografie und Quantum Computing.