Dependent Data in Social Sciences Research -

Dependent Data in Social Sciences Research

Forms, Issues, and Methods of Analysis. Second Edition 2024. XXII, 786 p. 70 illus. , 64 illus. in color. Sprache: Englisch. Dateigröße in MByte: 28.
pdf eBook , 786 Seiten
ISBN 3031563182
EAN 9783031563188
Veröffentlicht Oktober 2024
Verlag/Hersteller Springer
149,79 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

This second edition presents a variety of up-to-date statistical issues with regard to dependent or longitudinal data such as continuous time modeling, growth curve modeling, dynamic modeling, network analysis, Bayesian network analysis, directional dependence, multilevel analysis, item response modeling (IRT), estimation of missing data of longitudinal data and other methods for the analysis of dependent data (e.g., configural frequency analysis, ecological momentary assessment, and unobserved within-group individual differences). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. In addition, R-scripts to recapture the presented content are provided.
Researchers and graduate students in the social and behavioral sciences, education, econometrics, mathematics, biology, physics and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.

Portrait

Mark Stemmler is Professor at Friedrich Alexander University Erlangen-Nuremberg (FAU), Department of Psychology
Wolfgang Wiedermann is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US).
Francis L. Huang is Associate Professor, College of Education and Human Development, Co-Director of the Methodology Branch of the Missouri Prevention Science Institute, University of Missouri-Columbia (US).

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „Sofort online lesen über Meine Bibliothek“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.