PyTorch für Deep Learning - Ian Pointer

Ian Pointer

PyTorch für Deep Learning

Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen. Dateigröße in MByte: 13.
pdf eBook , 272 Seiten
ISBN 3960103999
EAN 9783960103998
Veröffentlicht Oktober 2020
Verlag/Hersteller O'Reilly
Übersetzer Übersetzt von Marcus Fraaß
Familienlizenz Family Sharing

Auch erhältlich als:

Taschenbuch
34,90
34,90 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Der praktische Einstieg in PyTorch
Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren
Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen
Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird
Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln.
Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen.
Aus dem Inhalt:
Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden
Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren
Lernen Sie, wie man Transfer Learning auf Bilder anwendet
Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen
Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen
Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen
Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert.

Portrait

Ian Pointer ist Data Engineer. Er hat sich auf Lösungen für Fortune-100-Kunden spezialisiert, die auf Methoden des Machine Learnings (insbesondere Deep Learning) basieren. Ian arbeitet derzeit bei Lucidworks, wo er sich innovativen NLP-Anwendungen und dem Engineering widmet.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „Sofort online lesen über Meine Bibliothek“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.