Joe Papa

PyTorch kompakt

Syntax, Design Patterns und Codebeispiele für Deep-Learning-Modelle. 'Animals'.
kartoniert , 235 Seiten
ISBN 3960091850
EAN 9783960091851
Veröffentlicht Dezember 2021
Verlag/Hersteller Dpunkt.Verlag GmbH
Übersetzer Übersetzt von Frank Langenau
Leseprobe öffnen

Auch erhältlich als:

pdf eBook
29,90
29,90 inkl. MwSt.
Sofort lieferbar (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Eine großartige Ressource für alle, die mit PyTorch arbeiten
Kurzgefasstes und präzises Wissen zu dem populären Deep-Learning-Framework
Sowohl für PyTorch-Einsteiger:innen als auch für Fortgeschrittene nützlich
Überblick über Modellentwicklung, Deployment, das PyTorch-Ökosystem und über hilfreiche PyTorch-Bibliotheken
Mit Kurzeinstieg in PyTorch
Dieses praktische Nachschlagewerk zu PyTorch, einem der beliebtesten Frameworks für Deep Learning, hält jederzeit präzises Wissen für Sie bereit. Joe Papa bietet Ihnen mit seiner Referenz den direkten Zugriff auf Syntax, Design Patterns und gut nachvollziehbare PyTorch-Codebeispiele. Das Buch enthält - neben einem PyTorch-Schnelleinstieg - eine Fülle von Informationen, die Ihre Entwicklungsarbeit verbessern und effizienter machen.
Data Scientists, Softwareentwickler:innen und Machine Learning Engineers finden in diesem Buch klaren, strukturierten PyTorch-Code, der jeden Schritt der Entwicklung neuronaler Netze abdeckt - vom Laden der Daten über die Anpassung von Trainingsschleifen bis hin zur Modelloptimierung und GPU-/TPU-Beschleunigung. Erfahren Sie außerdem, wie Sie Ihre ML-Modelle über AWS, Google Cloud oder Azure deployen und auf mobilen und Edge-Geräten bereitstellen.
Lernen Sie Tensoren und die grundlegende Syntax von PyTorch kennen
Erstellen Sie maßgeschneiderte Modelle sowie eigene Komponenten und Algorithmen für Deep Learning
Nutzen Sie Design Patterns zu Transfer Learning, Stimmungsanalyse oder Generative Adversarial Networks (GANs) für Ihre Projekte
Trainieren und deployen Sie Modelle sowohl auf GPUs als auch auf TPUs
Beschleunigen Sie den Trainingsprozess durch Optimierung der Modelle und durch parallele und verteilte Verarbeitung
Informieren Sie sich über nützliche PyTorch-Bibliotheken und das PyTorch-Ökosystem

Portrait

Joe Papa verfügt über 25 Jahre Erfahrung in Forschung und Entwicklung und ist Gründer von TeachMe.AI. Seinen Abschluss -Master of Science in Electrical Engineering- erwarb er an der Universität Rutgers. Bei Booz Allen Hamilton und Perspecta Labs leitete er KI-Forschungsteams, bei denen PyTorch intensiv eingesetzt wurde.
Joe Papa hat Hunderte von Data Scientists als Mentor betreut und mehr als 6.000 Studierende auf der ganzen Welt auf Udemy unterrichtet.

Hersteller
PDFlib GmbH
Tal 40

DE - 80331 München
Tel.: (089) 29164687