Grundlagen der fraktalen Geometrie mit iterierten Funktionensystemen (IFS) - Adrian Jan Jablonski

Adrian Jan Jablonski

Grundlagen der fraktalen Geometrie mit iterierten Funktionensystemen (IFS)

1. Auflage. Dateigröße in MByte: 2.
pdf eBook , 48 Seiten
ISBN 3656224587
EAN 9783656224587
Veröffentlicht Juni 2012
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
15,95
9,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Facharbeit (Schule) aus dem Jahr 2010 im Fachbereich Informatik - Theoretische Informatik, Note: 15, , Sprache: Deutsch, Abstract: Die fraktale Geometrie ist ein relativ neues Teilgebiet der Mathematik. Sie befasst sich mit geometrischen Objekten, den sog. Fraktalen, deren Eigenschaften sich von denen der "klassischen" Geometrie grundlegend unterscheiden.-- Wichtigstes Merkmal von Fraktalen ist die Skaleninvarianz, d.h., dass man bei jeder Vergrößerungsstufe Einzelheiten erkennen kann, egal wie stark man in das Objekt hinein dringt. Wenn man dagegen den Rand eines "klassischen" Objektes, wie den des Kreises, vergrößert, so ähnelt dieser mit zunehmender Vergrößerung immer mehr einer schlichten Gerade. Solche Objekte werden demnach als glatt bezeichnet. Bei einem Fraktal wird man jedoch nie eine Gerade erkennen können, sondern immer mehr Feinheiten des Objektes. Daher rührt die Bezeichnung "Fraktal", vom lateinischen "fractus" für "gebrochen", d.h. mit unzähligen Details übersät. Derartige Objekte waren schon seit Anfang des 20. Jahrhunderts bekannt, aber erst ab ca. 1970 wurde deren grundlegende Bedeutung erkannt. Davor wurden diese Objekte als "mathematische Monster" bezeichnet, da sie, wie ich im Folgenden erläutern werde, paradoxe Eigenschaften besitzen, die dem menschlichen Verstand mehr oder weniger "unbegreiflich" erscheinen. Dies änderte sich erst durch die Arbeit des Mathematikers Benoît Mandelbrot. Er erkannte, dass man mit Fraktalen etwas gänzlich Neues machen konnte, etwas was bis zu dieser Zeit als praktisch mathematisch unmöglich galt: die Modellierung und Beschreibung von "unregelmäßigen" Objekten der Natur, insbesondere der belebten, von der man annahm, sie könne nicht geometrisch beschrieben werden.
In dieser Besonderen Lernleistung setzte ich mich zunächst mit den "klassischen" Fraktalen des 20. Jahrhunderts auseinander, um anhand dieser die grundlegenden Konzepte der Fraktalgeometrie zu erläutern. Anschließend stelle ich die sog. iterierten Funktionensysteme (IFS), ein mächtiges Verfahren zur Kodierung und Generierung von Fraktalen, vor. Dabei werde ich auf die genaue Definition und deren Verwendung zur Modellierung und Darstellung Natur-ähnlicher Strukturen eingehen. Um die Theorie der Fraktale anschaulich erläutern zu können, habe ich diese Arbeit mit zahlreichen Bildern, die ich zum Großteil selbst erstellt habe, illustriert.
Im Rahmen dieser BeLL ist ebenfalls ein Computerprogramm entstanden, das die Funktionalität der IFS implementiert und anschaulich begreifbar macht.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Nymphenburger Straße 86

DE - 80636 München
Tel.: 089 55055917
E-Mail: ab@grin.com
Website:

Das könnte Sie auch interessieren

Download
39,90
Download
12,99
Download
19,90
Download
69,90
Download
34,99
Download
39,90
Download
49,90