Analyse von Finanzmarktdaten mittels multivariater GARCH-Modelle und Prognose der Volatilität des DAX - Luca Müller

Luca Müller

Analyse von Finanzmarktdaten mittels multivariater GARCH-Modelle und Prognose der Volatilität des DAX

Dateigröße in MByte: 1.
pdf eBook , 72 Seiten
ISBN 3346147231
EAN 9783346147233
Veröffentlicht April 2020
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
42,95
29,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Masterarbeit aus dem Jahr 2019 im Fachbereich BWL - Sonstiges, Note: 1,3, Universität Hamburg, Sprache: Deutsch, Abstract: Ziel dieser Arbeit ist es, die Volatilität des Deutschen Aktienindex (kurz DAX) zu prognostizieren. Es stellt sich die Forschungsfrage, ob kontemporäre Korrelationen im Zuge einer multivariaten Analyse genutzt werden können, um die Qualität der DAX-Volatilitätsprognose zu verbessern. Um diese Frage zu beantworten, werden in den weiterführenden Kapiteln dieser Arbeit univariate und multivariate DAX-Volatilitätsprognosen aufgestellt und anschließend miteinander verglichen. Bei der multivariaten Analyse wird zusätzlich zum DAX der Mid-Cap-DAX (kurz MDAX) in die Modellierung aufgenommen. Da es sich um zwei deutsche Aktienindizes handelt, die ähnlichen volkwirtschaftsspezifischen Einflussfaktoren unterliegen, sind starke kontemporäre Korrelationen zwischen DAX- und MDAX-Renditen zu erwarten.
Die Entscheidung, ob sich ein Finanztitel als Anlageobjekt eignet, hängt im Wesentlichen von der Rendite- und der Volatilitätserwartung ab. Die Volatilität beschreibt die Stärke der Wertschwankungen einer Anlage und kann somit als Risikomaß interpretiert werden. Es handelt sich um eine nicht-beobachtbare Größe, die sich durch die (bedingte) Standardabweichung der Renditen approximieren lässt. In den heranführenden Kapiteln dieser Arbeit wird zunächst der grundsätzlichen Fragestellung nachgegangen, ob Rendite- und/oder Volatilitätsverläufe Gesetzmäßigkeiten aufweisen, die mit Hilfe der Zeitreihenanalyse modelliert werden können. Ist dies der Fall, können Prognosen erstellt werden, um die Anlageentscheidung zu optimieren.
Zahlreiche Befunde der finanzökonomischen Empirie zeigen, dass hochfrequente Renditeprozesse zwar keine linearen, aber nicht-lineare Abhängigkeiten enthalten. Diese Abhängigkeitsstruktur spiegelt das empirische Erscheinungsbild sich abwechselnder Phasen hoher und niedriger Volatilitäten wider. Das als Volatilitätsclustering bezeichnete Phänomen impliziert eine zeitvariierende bedingte Varianz der Renditen. In der Statistik wird in diesem Zusammenhang von bedingter Heteroskedastizität gesprochen.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Nymphenburger Straße 86

DE - 80636 München
Tel.: 089 55055917
E-Mail: ab@grin.com
Website:

Das könnte Sie auch interessieren