Strukturlernen graphbasierter Modelle auf der Basis verteilten Wissens - Manuel Neubach

Manuel Neubach

Strukturlernen graphbasierter Modelle auf der Basis verteilten Wissens

1. Auflage. Dateigröße in MByte: 2.
pdf eBook , 152 Seiten
ISBN 3638820998
EAN 9783638820998
Veröffentlicht Juli 2007
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
59,00
39,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Diplomarbeit aus dem Jahr 2005 im Fachbereich Informatik - Theoretische Informatik, Note: 1,0, Technische Universität Dortmund, Sprache: Deutsch, Abstract: In der vorliegenden Arbeit werden zunächst die nötigen fundamentalen wahrscheinlichkeitstheoretischen Grundlagen bezüglich Bayes'scher Netze erläutert, um diese dann formal einzuführen.
Auf dieser Basis wird dann auf Konstruktionsmethoden für Bayes'sche Netze im Allgemeinen und den Einsatz maschineller Lernverfahren im Besonderen eingegangen. Speziell soll in diesem Kontext der Aspekt des Strukturlernens Bayes'scher Netze studiert werden. Nach einer Strukturierung der in der Literatur vorkommenden Ansätze werden aktuell erforschte Strukturlernalgorithmen diskutiert und gegenübergestellt, aber auch die Entwicklung und anschließende Implementierung eines eigenen Algorithmus wird dargelegt. Eine Laufzeitanalyse und empirische Tests an einer synthetisch erzeugten Datenbank und einer akquirierten Datenbank aus dem Anwendungsbereich Medizin runden dieses zentrale Kapitel ab.
In einem weiteren Kapitel werden Möglichkeiten der Einbringung von Expertenwissen diskutiert, insbesondere die Fusion von verteiltem Wissen ist in diesem Zusammenhang interessant. Hierbei geht es um die Integration von dem - möglicherweise sich widersprechenden - Wissen von mehreren (menschlichen) Experten codiert in Bayes'schen Netzen auf der einen Seite und auf der Basis maschineller Lernverfahren generierter (Teil-)Netze (die auf empirisch gewonnen Daten in Case-Datenbanken beruhen) auf der anderen Seite. Beispielsweise ist dies oft der Fall, wenn mehrere Ärzte mit verteiltem Wissen (teilweise auch dezentral an verschiedenen Orten ansässig) ein Spezialistenteam bilden und Entscheidungen treffen müssen.
Anschließend werden Möglichkeiten diskutiert, wie auf Basis eines (gelernten) Entscheidungsnetzes regelbasierte Systeme wie IF-THEN Regelbasen generiert werden können. Nach einer kurzen Einführung von Entscheidungsnetzen auf der einen Seite und Fuzzy-Regelbasen auf der anderen Seite, schließt sich ein Kapitel an, welches sich mit der Kompilierung von Entscheidungsnetzen in Fuzzy-Regelbasen auseinandersetzt. In diesem Zusammenhang wird ein Framework zur Kompilierung hergeleitet und ein Pseudo-Algorithmus zur Lösung dieses Problems vorgestellt. Eine konkrete Implementierung eines auf diesem Framework basierenden Algorithmus wird zusammen mit ersten Ergebnissen in den letzten beiden Unterkapiteln dargelegt.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Nymphenburger Straße 86

DE - 80636 München
Tel.: 089 55055917
E-Mail: ab@grin.com
Website:

Das könnte Sie auch interessieren

Download
39,90
Download
12,99
Download
19,90
Download
69,90
Download
34,99
Download
39,90
Download
49,90