Automatische Erkennung und Messung von IT-Sicherheitsaufwänden - Sebastian Wittor

Sebastian Wittor

Automatische Erkennung und Messung von IT-Sicherheitsaufwänden

1. Auflage. Dateigröße in MByte: 6.
pdf eBook , 103 Seiten
ISBN 3346152677
EAN 9783346152671
Veröffentlicht April 2020
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
47,95
36,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Bachelorarbeit aus dem Jahr 2016 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, Technische Universität Darmstadt, Sprache: Deutsch, Abstract: Im Rahmen der Arbeit wird auf Basis des maschinellen Lernens eine automatisierte Methode entwickelt, welche es erlaubt, mithilfe von Bugtrackernachrichten, Sicherheitsschwachstellen in Open Source Projekten zu erkennen. Dies erlaubt es, ökonomische Untersuchungen auf Basis der gewonnenen Daten zu tätigen, um Erkenntnisse zum Thema IT-Sicherheit, Open Source Software und Softwareentwicklung zu gewinnen.
Die Einsatzmöglichkeiten der Erkenntnisse sind im weitem Sinne vielseitig nutzbar. Einerseits geben sie einen Überblick über den Zusammenhang zwischen IT-Sicherheit, Entwicklern und Nutzern von Open Source Software, da diese Bugtrackernachrichten auf ihren Meldungen basieren. Andererseits können diese Erkenntnisse zur Erkennung von Hinweisen auf Sicherheitsschwachstellen in jenen Meldungen genutzt werden, was es Entwicklern erlaubt, diese Meldungen zu priorisieren.
Die Arbeit unterteilt sich in fünf Abschnitte. Zuerst wird im zweiten Kapitel eine Einführung in die Grundlagen der IT-Sicherheit, Open Source Software und des maschinellen Lernens gegeben. Danach wird im dritten Kapitel die aktuelle Forschung zum Thema Sicherheitsschwachstellen in der Softwareentwicklung und ihre Erkennung betrachtet. Auf Basis einer Auswahl an Projekten der Open Source Software Plattform SourceForge wird im vierten Kapitel eine Vorselektion der Bugtrackernachrichten getätigt und diese manuell klassifiziert.
Dies erlaubt es, basierend auf diesen Ergebnissen im fünften Kapitel, das maschinelle Lernen durchzuführen und die Resultate zu validieren. Im sechsten Kapitel wird eine statistische Untersuchung als Beispiel der Anwendung der Ergebnisse der Arbeit getätigt, um Einflussfaktoren in Bezug auf Sicherheitsschwachstellen in der Software zu identifizieren. Zum Abschluss wird im siebten Kapitel ein Fazit verfasst und einen Ausblick auf Ansätze für zukünftige Arbeiten gegeben.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Nymphenburger Straße 86

DE - 80636 München
Tel.: 089 55055917
E-Mail: ab@grin.com
Website: