Thomas Zabel

Neuronale Netze für Clustern und Vorhersage. Methodenvergleich und Tools

3. Auflage. Paperback.
kartoniert , 92 Seiten
ISBN 363870341X
EAN 9783638703413
Veröffentlicht August 2007
Verlag/Hersteller GRIN Verlag
Leseprobe öffnen

Auch erhältlich als:

pdf eBook
36,99
47,95 inkl. MwSt.
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Diplomarbeit aus dem Jahr 2001 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, Westfälische Wilhelms-Universität Münster (Institut für Wirtschaftsinformatik), Sprache: Deutsch, Abstract: Die Literatur zum Data Mining dokumentiert zahlreiche Versuche, aus verschiedenartigsten Datenbeständen neue Erkenntnisse zu gewinnen. Es werden unterschiedliche Algorithmen des Data Mining beschrieben. In dieser Arbeit soll die Eignung Künstlich Neuronaler Netze als Mining-Algorithmen für die Methoden Clustern und Vorhersage untersucht werden. Dabei begrenzt sich die Sichtweise auf Backpropagation - und Kohonen-Netze , da diese Neuronalen Netze für Clustern und Vorhersagen prädestiniert sind. Sie stellen eine Alternative zu den statistischen Methoden zur Prognose- bzw. Clustererstellung dar. Die eingesetzten Neuronalen Netze sollen mit dem K-Means-Verfahren und dem Box-Jenkins-Ansatz verglichen werden.
Die theoretischen Konstrukte werden anhand von Versicherungsdaten evaluiert. Die Ergebnisse zeigen die Vor- und Nachteile der untersuchten Methoden und geben dem Leser eine Handlungsempfehlung für die Auswahl von Data Mining-Algorithmen in der Praxis.

Hersteller
Books on Demand GmbH
In de Tarpen 42

DE - 22848 Norderstedt
Tel.: 040 53433511
E-Mail: info@bod.de
Website: